0.0
NA
CVE-2026-23103
ipvlan: Make the addrs_lock be per port
Description

In the Linux kernel, the following vulnerability has been resolved: ipvlan: Make the addrs_lock be per port Make the addrs_lock be per port, not per ipvlan dev. Initial code seems to be written in the assumption, that any address change must occur under RTNL. But it is not so for the case of IPv6. So 1) Introduce per-port addrs_lock. 2) It was needed to fix places where it was forgotten to take lock (ipvlan_open/ipvlan_close) This appears to be a very minor problem though. Since it's highly unlikely that ipvlan_add_addr() will be called on 2 CPU simultaneously. But nevertheless, this could cause: 1) False-negative of ipvlan_addr_busy(): one interface iterated through all port->ipvlans + ipvlan->addrs under some ipvlan spinlock, and another added IP under its own lock. Though this is only possible for IPv6, since looks like only ipvlan_addr6_event() can be called without rtnl_lock. 2) Race since ipvlan_ht_addr_add(port) is called under different ipvlan->addrs_lock locks This should not affect performance, since add/remove IP is a rare situation and spinlock is not taken on fast paths.

INFO

Published Date :

Feb. 4, 2026, 5:16 p.m.

Last Modified :

Feb. 4, 2026, 5:16 p.m.

Remotely Exploit :

No

Source :

416baaa9-dc9f-4396-8d5f-8c081fb06d67
Affected Products

The following products are affected by CVE-2026-23103 vulnerability. Even if cvefeed.io is aware of the exact versions of the products that are affected, the information is not represented in the table below.

No affected product recoded yet

Solution
Resolve race conditions in the Linux kernel's ipvlan module by implementing per-port address locks.
  • Update the Linux kernel to the latest patched version.
  • Review and apply relevant security advisories.
  • Ensure all network interfaces are properly configured.
  • Test network stability after applying updates.
References to Advisories, Solutions, and Tools
CWE - Common Weakness Enumeration

While CVE identifies specific instances of vulnerabilities, CWE categorizes the common flaws or weaknesses that can lead to vulnerabilities. CVE-2026-23103 is associated with the following CWEs:

Common Attack Pattern Enumeration and Classification (CAPEC)

Common Attack Pattern Enumeration and Classification (CAPEC) stores attack patterns, which are descriptions of the common attributes and approaches employed by adversaries to exploit the CVE-2026-23103 weaknesses.

We scan GitHub repositories to detect new proof-of-concept exploits. Following list is a collection of public exploits and proof-of-concepts, which have been published on GitHub (sorted by the most recently updated).

Results are limited to the first 15 repositories due to potential performance issues.

The following list is the news that have been mention CVE-2026-23103 vulnerability anywhere in the article.

The following table lists the changes that have been made to the CVE-2026-23103 vulnerability over time.

Vulnerability history details can be useful for understanding the evolution of a vulnerability, and for identifying the most recent changes that may impact the vulnerability's severity, exploitability, or other characteristics.

  • New CVE Received by 416baaa9-dc9f-4396-8d5f-8c081fb06d67

    Feb. 04, 2026

    Action Type Old Value New Value
    Added Description In the Linux kernel, the following vulnerability has been resolved: ipvlan: Make the addrs_lock be per port Make the addrs_lock be per port, not per ipvlan dev. Initial code seems to be written in the assumption, that any address change must occur under RTNL. But it is not so for the case of IPv6. So 1) Introduce per-port addrs_lock. 2) It was needed to fix places where it was forgotten to take lock (ipvlan_open/ipvlan_close) This appears to be a very minor problem though. Since it's highly unlikely that ipvlan_add_addr() will be called on 2 CPU simultaneously. But nevertheless, this could cause: 1) False-negative of ipvlan_addr_busy(): one interface iterated through all port->ipvlans + ipvlan->addrs under some ipvlan spinlock, and another added IP under its own lock. Though this is only possible for IPv6, since looks like only ipvlan_addr6_event() can be called without rtnl_lock. 2) Race since ipvlan_ht_addr_add(port) is called under different ipvlan->addrs_lock locks This should not affect performance, since add/remove IP is a rare situation and spinlock is not taken on fast paths.
    Added Reference https://git.kernel.org/stable/c/04ba6de6eff61238e5397c14ac26a6578c7735a5
    Added Reference https://git.kernel.org/stable/c/1f300c10d92c547c3a7d978e1212ff52f18256ed
    Added Reference https://git.kernel.org/stable/c/6a81e2db096913d7e43aada1c350c1282e76db39
    Added Reference https://git.kernel.org/stable/c/d3ba32162488283c0a4c5bedd8817aec91748802
EPSS is a daily estimate of the probability of exploitation activity being observed over the next 30 days. Following chart shows the EPSS score history of the vulnerability.
Vulnerability Scoring Details
No CVSS metrics available for this vulnerability.